
DEEPIKARANI K, D.S BHAVANI, K. RAVI KISHORE, D.DEEPIKA/ International Journal 

of Engineering Research and Applications (IJERA)  ISSN: 2248-9622                           

www.ijera.com       Vol. 2, Issue 1,Jan-Feb 2012, pp.672-677 

672 | P a g e  

 

DATA TRANSMISSION USING TCP, GZIP & TINY 

ALGORITHMS 

 
DEEPIKARANI K*, D.S BHAVANI**, K. RAVI KISHORE***, 

D.DEEPIKA****  

*ASSISTANT PROFESSOR, HITMA, HYDERABAD 

**M.TECH STUDENT JNTUH, HYDERABAD 

***SENIOR PROJECT ENGINEER, NETWORK SECURITY, CDAC, HYDERABAD 

****ASSISTANT PROFESSOR, MGIT, HYDERABAD 

 
Abstract -- The aim of the Paper is to provide the security during transmission of the data. Commonly used 

technologies are cryptography, Compression and decompression. This can be used for secure and fast 

sending for security purpose we are using the Cryptography technology and to increase the file transfer speed 

we are using the compression and decompression technologies. In this paper we described lot of processes for 

secure data transmission. First perform the compression and decompression techniques for decrease the file 

size. It will increase the transmission speed here maintains compression and decompression technique based 

on the GZIP Algorithm. Than perform the cryptography technique based on the TINY Encryption Algorithm. 

In sending process the TCP (Transaction control protocol) was involved. 

Keywords – TINY, GZIP, TCP, cryptography, compression, decompression, 

 

INTRODUCTION 

System definition is the process of 

obtaining a clear understanding of the problem 

space such as your business opportunities; user 

needs, or market environment and defining an 

application or system to solve that problem. In the 

existing system, file transfer is not a secured 

transaction. User Profiles and access controls are 

not integrated to provide higher-level security in 

data transfer. Encryption and decryption 

implementation through a character user interface 

is a complicated process where the user or the 

administrator is to follow some complex process.  

The information generated at the client 

side while under the standard of transfer should be 

secure enough and protected by any intrusions and 

interceptions that may occur while the information 

is transferred. The overall system should 

concentrate on the best algorithm that can be 

implemented for al the resource standards that can 

be implemented as per the standards of the 

technical quality. In the traditional 2-tier 

architecture there existed only the server and the 

client. In most cases the server was only a data base 

server that can only offer data. Therefore majority 

of the business logic i.e., validations etc. had to be 

placed on the clients system. This makes 

maintenance expensive. Such clients are called as 

„fat clients‟. This also means that every client has 

to be trained as to how to use the application and 

even the security in the communication is also the 

factor to be considered. 

Since the actual processing of the data 

takes place on the remote client the data has to be  

 

 

 

transported over the network, which 

requires asecured format of the transfer method. 

How to conduct transactions is to be controlled by 

the client and advanced techniques implementing 

the cryptographic standards in the executing the 

data transfer transactions. Present day transactions 

are considered to be "un-trusted" in terms of 

security, i.e. they are relatively easy to be hacked. 

Nevertheless, sensitive data transfer is to be carried 

out even if there is lack of an alternative. Network 

security in the existing system is the motivation 

factor for a new system with higher-level security 

standards for the information exchange to provide 

ease and secured file maintenance and management 

in a distributed environment. 

So in this paper we are going to propose 

that the system should have the following features : 

The transactions should take place in a secured 

format between various clients in the network. The 

validation code should be placed on the server and 

not on the client such that file transfer takes place 

between only the registered users only. This leads 

to a thin client, which is more desirable. The server 

should identify the type of request (GET/POST), 

file access permissions and perform appropriate 

action. It should also identify the user and provide 

the communication according to the prescribed 

level of security with transfer of the file requested 

and run the required process at the server if 

necessary. When responding to the client, the 

server should send necessary information such as 

User authorization and authentication information, 

Encryption, Decryption types and their level of 

hierarchy etc. 



DEEPIKARANI K, D.S BHAVANI, K. RAVI KISHORE, D.DEEPIKA/ International Journal 

of Engineering Research and Applications (IJERA)  ISSN: 2248-9622                           

www.ijera.com       Vol. 2, Issue 1,Jan-Feb 2012, pp.672-677 

673 | P a g e  

 

RELATED WORK 
In this paper we are going to focus on this 

following techniques in-order to send the data 

securely using cryptography. 

Compress and Decompress Technique: 

This technique maps arbitrary input into 

printable character output.  The form of encoding 

has the following relevant characteristics. The 

range of the function is a character set that is 

universally re-presentable at all sites, not a specific 

binary encoding of that character set. Thus, the 

characters themselves can be encoded into 

whatever form is needed by a specific system. For 

instance, the character 'E' is represented in ASCII 

system as a hexadecimal 45 and in EDCDIC- based 

system as hexadecimal- c5.The character set 

consists of 65 printable characters, one of which is 

used for padding. With 2^6 = 64 available 

characters, each character can be used to represent 

6 bits of input. 

No control characters are included in the 

set. Thus, the message encoded in Radix-64 can 

traverse mail-handling system. That scans the data 

stream for control characters. The hyphen character 

"- " is not included. 

Cryptography Technique (Tiny encryption): 

The Tiny Encryption Algorithm (TEA) is a 

cryptographic algorithm designed to minimize 

memory footprint and maximize speed. It is a 

Feistel type cipher that uses operations from mixed 

(orthogonal) algebraic groups. This research 

presents the cryptanalysis of the Tiny Encryption 

Algorithm. In this research we inspected the most 

common methods in the cryptanalysis of a block 

cipher algorithm. TEA seems to be highly resistant 

to differential cryptanalysis, and achieves complete 

diffusion (where a one bit difference in the 

plaintext will cause approximately 32 bit 

differences in the cipher text) after only six rounds. 

Time performance on a modern desktop computer 

or workstation is very impressive. 

As computer systems become more pervasive 

and complex, security is increasingly important. 

Cryptographic algorithms and protocols constitute 

the central component of systems that protect 

network transmissions and store data. The security 

of such systems greatly depends on the methods 

used to manage, establish, and distribute the keys 

employed by the cryptographic techniques. Even if 

a cryptographic algorithm is ideal in both theory 

and implementation, the strength of the algorithm 

will be rendered useless if the relevant keys are 

poorly managed. 

The following notation is necessary for our 

discussion.  

• Hexadecimal numbers will be subscripted with 

“h,” e.g., 10 = 16. h  

Bitwise Shifts: The logical shift of x by y bits is 

denoted by x << y. The logical right shift of x by y 

bits is denoted by x >> y.  

Bitwise Rotations: A left rotation of x by y bits is 

denoted by x <<< y. A right rotation of x by y bits 

is denoted by x >>> y.  

Exclusive-OR: The operation of addition of n-

tuples over the field (also known as 2F exclusive-

or) is denoted by x⊕y. 

The Tiny Encryption Algorithm is a Feistel type 

cipher that uses operations from mixed 

(orthogonal) algebraic groups. A dual shift causes 

all bits of the data and key to be mixed repeatedly. 

The key schedule algorithm is simple; the 128-bit 

key K is split into four 32-bit blocks K = ( K[0], 

K[1], K[2], K[3]). TEA seems to be highly resistant 

to differential cryptanalysis and achieves complete 

diffusion (where a one bit difference in the 

plaintext will cause approximately 32 bit 

differences in the cipher text). Time performance 

on a workstation is very impressive.  

Block ciphers where the cipher text is calculated 

from the plain text by repeated application of the 

same transformation or round function. In a Feistel 

cipher, the text being encrypted is split into two 

halves. The round function, F, is applied to one half 

using a sub key and the output of F is (exclusive-

or-ed (XORed)) with the other half. The two halves 

are then swapped. Each round follows the same 

pattern except for the last round where there is 

often no swap. The focus of this thesis is the TEA 

Feistel Cipher. 

 
Fig.1: TEA Feistel Cipher 

 

The inputs to the encryption algorithm are a 

plaintext block and a key K .The plaintext is P = 

(Left[0], Right[0]) and the cipher text is C = 



DEEPIKARANI K, D.S BHAVANI, K. RAVI KISHORE, D.DEEPIKA/ International Journal 

of Engineering Research and Applications (IJERA)  ISSN: 2248-9622                           

www.ijera.com       Vol. 2, Issue 1,Jan-Feb 2012, pp.672-677 

674 | P a g e  

 

(Left[64], Right[64]). The plaintext block is split 

into two halves, Left[0] and Right[0]. Each half is 

used to encrypt the other half over 64 rounds of 

processing and then combine to produce the cipher 

text block.  

• Each round i has inputs Left[i-1] and Right[i-1], 

derived from the previous round, as well as a sub 

key K[i] derived from the 128 bit overall K.  

• The sub keys K[i] are different from K and from 

each other.  

• The constant delta =(5
1/2

-1)*2
31

 =9E3779B h  , is 

derived from the golden number ratio to ensure that 

the sub keys are distinct and its precise value has 

no cryptographic significance.  

• The round function differs slightly from a 

classical Fiestel cipher structure in that integer 

addition modulo 2³² is used instead of exclusive-or 

as the combining operator. 

 

 
Fig.2: Internal details of TEA 

 

Above Fig.2 presents the internal details of the 

ith cycle of TEA. The round function, F, 

consists of the key addition, bitwise XOR and 

left and right shift operation. We can describe 

the output (Left[i +1] , Right[i +1] ) of the ith 

cycle of TEA with the input (Left[i] ,Right[i] ) 

as follows  

Left [i+1] = Left[i] F ( Right[i], K [0, 1], 

delta[i] ),  

Right [i +1] = Right[i] F ( Right[i +1], K [2, 3], 

delta[i] ),  

delta[i] = (i +1)/2 * delta,  

The round function, F, is defined by  

F(M, K[j,k], delta[i] ) = ((M << 4) K[j]) ⊕ (M 

delta[i] ) ⊕ ((M >> 5) K[k]).  

The round function has the same general 

structure for each round but is parameterized by 

the round sub key K[i]. The key schedule 

algorithm is simple; the 128-bit key K is split 

into four 32-bit blocks K = ( K[0], K[1], K[2], 

K[3]). The keys K[0] and K[1] are used in the 

odd rounds and the keys K[2] and K[3] are used 

in even rounds. 

 
Fig.3: structure of the TEA decryption routine 

 

Decryption is essentially the same as the encryption 

process; in the decode routine the cipher text is 

used as input to the algorithm, but the sub keys K[i] 

are used in the reverse order. 

Fig.3 presents the structure of the TEA decryption 

routine. The intermediate value of the decryption 

process is equal to the corresponding value of the 

encryption process with the two halves of the value 

swapped. For example, if the output of the nth 

encryption round is  

ELeft[i] || ERight[i] (ELeft[i] concatenated with 

ERight[i]).  

Then the corresponding input to the (64-i)th 

decryption round is  

DRight[i] || DLeft[i] (DRight[i] concatenated with 

DLeft[i]).  

After the last iteration of the encryption process, 

the two halves of the output are swapped, so that 

the cipher text is ERight[64] || ELeft[64], the output 

of that round is the final cipher text C. Now this 

cipher text is used as the input to the decryption 

algorithm. The input to the first round is 

ERight[64] || ELeft[64], which is equal to the 32-bit 

swap of the output of the 64
th 

round of the 

encryption process. 

Connection Manager: The Connection Manager 

deals with the architecture, which supports the 

system to identify the end users for the 

communication and establish the communication. 



DEEPIKARANI K, D.S BHAVANI, K. RAVI KISHORE, D.DEEPIKA/ International Journal 

of Engineering Research and Applications (IJERA)  ISSN: 2248-9622                           

www.ijera.com       Vol. 2, Issue 1,Jan-Feb 2012, pp.672-677 

675 | P a g e  

 

Connection and disconnection of the 

communication channel between the users for the 

access of file system and file transfer services. The 

Connection Manager receives the IP address to be 

connected and the file to be sent then establishes 

the connection and transfers the file. 

DESIGN & IMPLEMENTATION 

Compres

s

Send

Key
Embed

Encrypt Select

File

Sender

1: Select the File to Send()

2: Compress the file()3: Encrypt the file()

4: Give the key for Encrypt()

5: Embed the file()6: Send the file()

 
Fig.4: Interoperable Collaboration Diagram for 

Sender 

Receiver

Save Key Decrypt

De

Compress

Deembe

d

Mainform

1: open Mainform()

2: Deembed The File()3: DeCompress The File()

4: decrypt the File()

5: Give the key Info()6: Save The File()

 
Fig.5: Interoperable Collaboration Diagram for 

Receiver 

 
Fig.6: Interoperable Deployment Diagram 

 

Below given code is used for digital encryption. 

Which is used by the sender to encrypt the code 

and transmit to the receiver. 

Static String name; 

public  DBS(int op,String x) { 

String toBeSaved = ""; 

String theText; 

int  choice=op; 

name=x; 

if(choice == 1) { 

byte[] theFile = getFile(name); 

String key = JOptionPane.showInputDialog("Enter 

your key (the longer the better):"); 

Encryption encryption = new 

Encryption(theFile,key); 

encryption.encrypt(); 

saveFile(encryption.getFileBytes()); 

JOptionPane.showMessageDialog(null,"\nYour file 

has been encrypted and 

saved\n","message",JOptionPane.INFORMATION

_MESSAGE); 

} 

else if(choice == 2) 

{  

byte[] theFile = getFile(name); 

JPasswordField pf = new JPasswordField("Enter 

the key: "); 

String key = JOptionPane.showInputDialog("Enter 

the key: "); 

Encryption encryption = new 

Encryption(theFile,key); 

encryption.decrypt(); 

saveFile(encryption.getFileBytes()); 

JOptionPane.showMessageDialog(null,"\nYour file 

has been decrypted and 

saved\n","message",JOptionPane.INFORMATION

_MESSAGE); 

} 

else if(choice == 4) 

{ 

System.out.println("GOOD DAY!"); 

System.exit(0); 

} 

else if(choice == 3) 



DEEPIKARANI K, D.S BHAVANI, K. RAVI KISHORE, D.DEEPIKA/ International Journal 

of Engineering Research and Applications (IJERA)  ISSN: 2248-9622                           

www.ijera.com       Vol. 2, Issue 1,Jan-Feb 2012, pp.672-677 

676 | P a g e  

 

{ 

String output="\n\nImportant info on key choice: 

\n\n"+ 

The longer the key, the better. This program\n" + 

"Implements a key expansion algorithm that 

given\n" + 

"an average length of user-entered key is almost\n" 

+ 

"analagous to the one-time pad encryption 

method\n\n" + 

"For example: Use key length of 1: 128bit 

encryption\n\n"+ 

"Use key length of 2: 256bit encryption\n\n"+ 

"Use key length of 8: 1024bit encryption\n\n"+ 

"etc...\n\n\n"; 

JOptionPane.showMessageDialog(null,output, 

"information",JOptionPane.ERROR_MESSAGE); 

} } 

RESULTS 

The below are the obtained screen shots of the 

paper. 

 

 
Fig.7: Main Screen to encrypt a file 

 
Fig.8 : Selecting a File to encrypt 

 

 
Fig.9: Process of Compressing & Encrypting the 

File using a password 



DEEPIKARANI K, D.S BHAVANI, K. RAVI KISHORE, D.DEEPIKA/ International Journal 

of Engineering Research and Applications (IJERA)  ISSN: 2248-9622                           

www.ijera.com       Vol. 2, Issue 1,Jan-Feb 2012, pp.672-677 

677 | P a g e  

 

 
Fig.10: Giving the information of the receiver 

 

 
Fig.11: Receiver decrypting the file using the key 

 

CONCLUSION 

In this paper we address how Compression & 

decompression support security and cryptography 

to the data .For fast transmission of date and for 

security reasons we use compression & 

decompression techniques. The performs of 

compression decompression techniques for 

decrease the file size has been implemented which 

will increase the transmission speed.  Here we 

managed to maintain compression and 

decompression technique based on the GZIP 

Algorithm and performed the cryptography 

technique based on the TINY Encryption 

Algorithm .So the security can be more provided 

with this technique during transmission of the data. 

REFERENCES 

[1] D. Coppersmith and M. Jakobsson, “Almost 

Optimal Hash Sequence Traversal”, 

Proceedings of the Fifth International 

Conference on inancial Cryptography, pp. 

102-119, 2002. 

[2]  D. Dzung, M. Naedele, T.P. Hoff, M. 

Crevatin, “Security for Industrial 

Communication Systems”, Proceedings of the 

IEEE, vol. 93, no. 6, 2005  

[3]  J. Falco, J. Gilsinn, K. Stouffer, “IT Security 

for Industrial Control Systems: Requirements 

Specification and Performance Testing”, 

NDIA Homeland Security Symposium & 

Exhibition, 2004. 

[4] M. Fischlin, “Fast Verification of Hash 

Chains”, The Cryptographers Track at the 

RSA Conference, pp. 339-352, 2004.  

[5]  J. Gilsinn, “Real-Time I/O Performance 

Metrics and Tests for Industrial Ethernet”, 

ISA Automation West, 2004. 

[6]  B. Groza, T.-L. Dragomir, "On the use of 

one-way chain based authentication in secure 

control systems", Second International 

Conference on Availability, Reliability and 

Security, pp. 1214-1221, IEEE Comp. Soc., 

2007. 

[7]  N. Haller, C. Metz, P. Nesser, M. Straw, “A 

One-Time Password System”, RFC 2289, 

Bellcore, Kaman Sciences Corporation, 

Nesser and Nesser Consulting, 1998. 

[8]  O. C. Imer, S. Yuksel, T. Basar, “Optimal 

control of lti systems over unreliable 

communication links”, Automatica, (42), 

2006.  

[9]  L. Lamport, “Password Authentication with 

Insecure Communication”, Communication 

of the ACM, 24, 770-772, 1981. 

[10]  C.J. Mitchell and L. Chen, “Comments on the 

S/KEY User Authentication Scheme”, ACM 

Operating Systems Review, pp. 12-16, 1996. 

 

 


